Sample Size Considerations for Comparing Dynamic Treatment Regimens in a Sequential Multiple-Assignment Randomized Trial with a Continuous Longitudinal Outcome

ENAR Spring Meeting 2018

Nicholas J. Seewald Kelley M. Kidwell, James R. McKay, Inbal Nahum-Shani, Daniel Almirall 27 March 2018

Department of Statistics University of Michigan

 In treating alcohol- and cocaine-dependent patients, there is a question as to how best to re-engage individuals who do not engage in treatment.

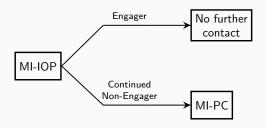
- In treating alcohol- and cocaine-dependent patients, there is a question as to how best to re-engage individuals who do not engage in treatment.
- For these individuals, should we attempt to re-engage them in their original treatment, or offer them a choice of treatment modality?

- In treating alcohol- and cocaine-dependent patients, there is a question as to how best to re-engage individuals who do not engage in treatment.
- For these individuals, should we attempt to re-engage them in their original treatment, or offer them a choice of treatment modality?
- · What do we do if that doesn't work?

- In treating alcohol- and cocaine-dependent patients, there is a question as to how best to re-engage individuals who do not engage in treatment.
- For these individuals, should we attempt to re-engage them in their original treatment, or offer them a choice of treatment modality?
- · What do we do if that doesn't work?
- This is a question about a sequence of treatments.

Dynamic Treatment Regimens

Dynamic treatment regimens operationalize clinical decision-making by recommending particular treatments to certain subsets of patients at specific times. (Chakraborty and Moodie, 2013)



- MI-IOP: 2 motivational interviews to re-engage patient in intensive outpatient program
- MI-PC: 2 motivational interviews to engage patient in treatment of their

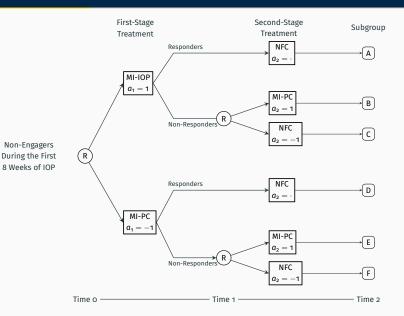
Sequential, Multiple-Assignment Randomized Trials

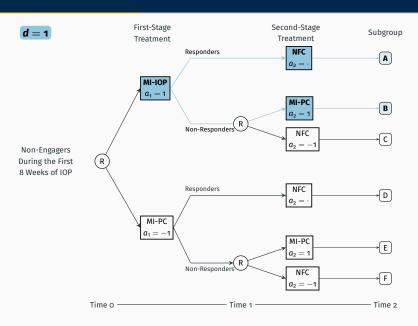
A **SMART** is one type of randomized trial design that can be used to answer questions at multiple stages of the development of a high-quality DTR.

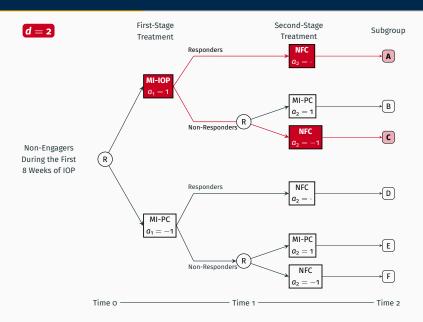
Sequential, Multiple-Assignment Randomized Trials

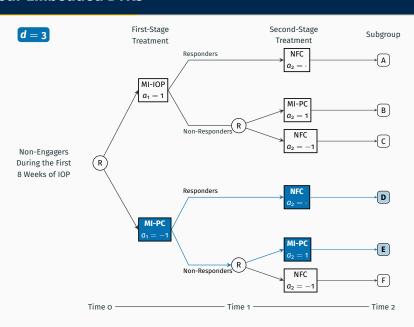
A **SMART** is one type of randomized trial design that can be used to answer questions at multiple stages of the development of a high-quality DTR.

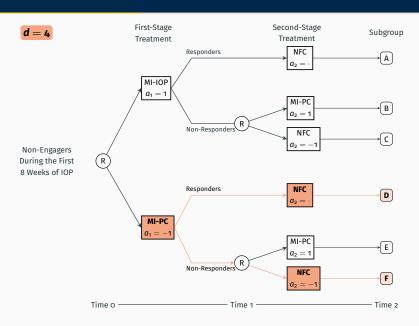
The key feature of a SMART is that some (or all) participants are randomized *more than once*.







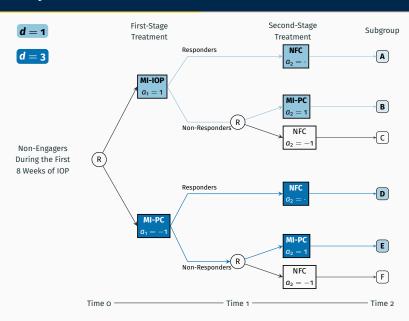




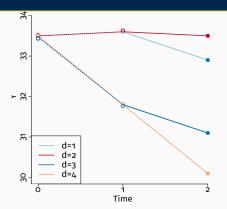
A common primary aim in a SMART

is the comparison of two embedded DTRs using a continuous outcome collected at the end of the study.

Primary Aim



A Model for a Continuous Longitudinal Outcome in ENGAGE (Lu, et al., 2016)



$$\begin{split} E_{(d)} \left[Y_t \mid \mathbf{X} \right] &:= \mu^{(d)}(\mathbf{X}_i; \boldsymbol{\eta}, \gamma) \\ &= \boldsymbol{\eta}^\top \mathbf{X}_i + \gamma_0 \\ &+ \mathbb{1}_{\{t \leq 1\}} \left\{ \gamma_1 t + \gamma_2 a_1 t \right\} \\ &+ \mathbb{1}_{\{t > 1\}} \left\{ \gamma_1 + \gamma_2 a_1 \right. \\ &+ \gamma_3 (t - 1) + \gamma_4 (t - 1) a_1 \\ &+ \gamma_5 (t - 1) a_2 \\ &+ \gamma_6 (t - 1) a_1 a_2 \right\} \end{split}$$

	d = 1	d = 2	d = 3	d = 4
a ₁	1	1	-1	-1
a_2	1	-1	1	-1

"GEE-Type" Estimating Equations for Model Parameters (Lu, et al., 2016)

$$\begin{aligned} \mathbf{O} &= \sum_{i=1}^{N} \sum_{d} \left[I^{(d)}(Ad_{1i}, R_i, A_{2i}) \cdot W(R_i) \cdot \mathbf{D}^{(d)}(\mathbf{X}_i)^{\top} \\ &\cdot \mathbf{V}^{(d)}\left(\alpha\right)^{-1} \cdot \left(\mathbf{Y}_i - \boldsymbol{\mu}^{(d)}(\mathbf{X}_i; \boldsymbol{\eta}, \boldsymbol{\gamma})\right) \right], \end{aligned}$$

- d specifies an embedded DTR,
- $I^{(d)}(A_{1i}, R_i, A_{2i}) = \mathbb{1}_{\{A_{1i} = a_1\}} \left(R_i + (1 R_i) \, \mathbb{1}_{\{A_{2i} = a_2\}} \right)$
- $W(R_i) = 2(R_i + 2(1 R_i))$
- $\mu^{(d)}(\mathbf{X}_i; \eta, \gamma) = E\left[\mathbf{Y}^{(d)} \mid \mathbf{X}_i\right]$
- $extbf{D}^{(d)}(extbf{X}_i) = rac{\partial}{\partial (oldsymbol{\eta}^{ op}, oldsymbol{\gamma}^{ op})^{ op}} oldsymbol{\mu}^{(d)}(extbf{X}_i; oldsymbol{\eta}, oldsymbol{\gamma})$
- $extbf{V}^{(d)}\left(lpha
 ight)$ is a working model for $ext{Var}\left(extbf{Y}^{(d)}-\mu^{(d)}(extbf{X}_i;\eta,\gamma)\mid extbf{X}_i
 ight)$

Goal:

Develop a sample size formula for SMARTs with a continuous, repeated-measures outcome in which the primary aim is to compare two embedded DTRs at the end of the study.

$$N \geq \frac{4\left(Z_{1-\alpha/2} + Z_{1-\beta}\right)^2}{\delta^2} \cdot (1-\rho^2) \cdot (2-r)$$

•
$$\delta = \mathsf{E}[\mathsf{Y}_2^{(d)} - \mathsf{Y}_2^{(d')}] / \sqrt{\left(\mathsf{Var}(\mathsf{Y}_2^{(d)}) + \mathsf{Var}(\mathsf{Y}_2^{(d')})\right)/2}$$

- α is the desired type-I error
- 1 $-\beta$ is the desired power
- $\rho = \operatorname{cor}(Y_t, Y_{t'})$ for $t \neq t'$
- $r = P(R_i = 1)$

$$N \ge \underbrace{\frac{4\left(\mathbf{Z}_{1-\alpha/2} + \mathbf{Z}_{1-\beta}\right)^{2}}{\delta^{2}}}_{\text{Standard sample size for a 2-arm trial}} \cdot (1 - \rho^{2}) \cdot (2 - r)$$

•
$$\delta = \mathsf{E}[\mathsf{Y}_2^{(d)} - \mathsf{Y}_2^{(d')}] / \sqrt{\left(\mathsf{Var}(\mathsf{Y}_2^{(d)}) + \mathsf{Var}(\mathsf{Y}_2^{(d')})\right) / 2}$$

- α is the desired type-I error
- 1 $-\beta$ is the desired power
- $\rho = \operatorname{cor}(Y_t, Y_{t'})$ for $t \neq t'$
- $r = P(R_i = 1)$

$$N \ge \frac{4\left(z_{1-\alpha/2} + z_{1-\beta}\right)^2}{\delta^2} \cdot \underbrace{\left(1-\rho^2\right)}_{\text{Deflation for repeated measures}} \cdot (2-r)$$

•
$$\delta = \mathsf{E}[\mathsf{Y}_2^{(d)} - \mathsf{Y}_2^{(d')}] / \sqrt{\left(\mathsf{Var}(\mathsf{Y}_2^{(d)}) + \mathsf{Var}(\mathsf{Y}_2^{(d')})\right)/2}$$

- α is the desired type-I error
- 1 $-\beta$ is the desired power
- $\rho = \operatorname{cor}(Y_t, Y_{t'})$ for $t \neq t'$
- $r = P(R_i = 1)$

$$N \geq rac{4\left(\mathbf{Z}_{1-lpha/2} + \mathbf{Z}_{1-eta}
ight)^2}{\delta^2} \cdot \left(\mathbf{1} -
ho^2
ight) \cdot \underbrace{\left(\mathbf{2} - \mathbf{r}
ight)}_{ ext{Inflation for SMART design}}$$

•
$$\delta = \mathsf{E}[\mathsf{Y}_2^{(d)} - \mathsf{Y}_2^{(d')}] / \sqrt{\left(\mathsf{Var}(\mathsf{Y}_2^{(d)}) + \mathsf{Var}(\mathsf{Y}_2^{(d')})\right) / 2}$$

- α is the desired type-I error
- 1 $-\beta$ is the desired power
- $\rho = cor(Y_t, Y_{t'})$ for $t \neq t'$

•
$$r = P(R_i = 1)$$

Table 1: Example sample sizes for comparison of two embedded DTRs. r=0.4, $\alpha=0.05$ (two-sided), and $1-\beta=0.8$.

	Wi	Within-Person Correlation			
Std. Effect Size	ho = 0	ho = 0.3	$ ho = {\sf 0.6}$		
$\delta=$ 0.3	559	508	358		
$\delta =$ 0.5	201	183	129		
$\delta = 0.8$	79	72	51		

Working Assumptions for Sample Size

1. Constrained conditional variances.

1.1
$$\operatorname{Var}\left(Y_t^{(d)} \mid R^{(a_1)} = 0\right), \operatorname{Var}\left(Y_t^{(d)} \mid R^{(a_1)} = 1\right) \leq \operatorname{Var}\left(Y_t^{(d)}\right)$$
1.2 $\operatorname{Cov}(Y_t^{(d)}, Y_2^{(d)} \mid R = 1) \leq \operatorname{Cov}(Y_t^{(d)}, Y_2^{(d)} \mid R = 0)$ for all d and $t = 0, 1$.

2. Exchangeable correlation structure.

$$\mathsf{Var}\left(\mathbf{Y}^{(d)}\right) = \sigma^2 \begin{bmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{bmatrix}$$

for all d.

Simulation Results

Target: $1 - \beta$ = 0.8, α = 0.05 (two-sided)

				Empirical power		
δ	P(R=1)	ρ	N	All satisfied	1.1 violated	1.2 violated
0.3	0.4	0	559	0.799	0.776	-
		0.3	508	0.804	0.767	0.787
		0.6	358	0.825	0.777	0.798
		0.8	201	0.826	0.770	0.819
	0.6	0	489	0.795	0.751	_
		0.3	445	0.797	0.755	0.775
		0.6	313	0.812	0.753	0.779
		0.8	176	0.827	0.724	0.807

Bolded results are significantly different from 0.8 at the 0.05 significance level.

Acknowledgements

Thanks to Tianshuang Wu for his contributions to this work.

Funding

This work was supported by the following awards from the National Institutes of Health: Ro1DA039901, P50DA039838, R01HD073975, R03MH097954, P01AA016821, RC1AA019092, U54EB020404.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.